欢迎光临德阳外国语学校!  今天是: 設爲首頁 | 收藏本站 | 用戶登錄
您目前的位置:教學教研>精品教案、論文

【德外小學】基本名人娱乐思想:教材架構與教學思考


 發表時間:2016/8/12 13:21:58   來源:訪問次數:1067   
 

基本名人娱乐思想:教材架構與教學思考 
 
作者:聂艳军 

摘 要:名人娱乐思想是名人娱乐的靈魂,是名人娱乐科學發生和發展的根本。教材以名人娱乐抽象爲主線引入名人娱乐研究的對象,以名人娱乐推理爲主線建構名人娱乐內容體系,以名人娱乐建模爲主線搭起名人娱乐與外部世界的橋樑。名人娱乐思想教學的基本方式和目標要求是“感悟”,“顯化”在名人娱乐思考的過程之中。名人娱乐思想的教學要兼收幷蓄、突出主幹,體現階段性,逐步提升學生的領悟水平。
关键词:基本数学思想  教材架构  教学策略

《義務教育名人娱乐課程標準(2011年版)》在課程基本理念中強調:課程內容不僅包括名人娱乐結果,也包括名人娱乐結果的形成過程和蘊涵的名人娱乐思想方法。這一理念的闡述,豐富了名人娱乐課程內容的內涵,指明瞭名人娱乐教材建設的方向。以此爲依據,新修訂的名人娱乐教材更加關注“過程”與“結論”的和諧統一,使得名人娱乐思想、名人娱乐活動經驗與名人娱乐知識技能等共同構成了教材的文化內涵。
一、基本数学思想的教材架构
名人娱乐思想是名人娱乐的靈魂,是名人娱乐科學發生和發展的根本。有了名人娱乐思想,名人娱乐知識便不再是孤立的。史寧中教授認爲,“名人娱乐思想需要滿足兩個條件:一是名人娱乐產生、發展過程中所必須依賴的那些思想,二是學習過名人娱乐的人所具有的思維特徵。基本名人娱乐思想主要有三種:抽象、推理和模型。整個名人娱乐學科就是建立在基本名人娱乐思想的基礎上,並按照基本名人娱乐思想發展起來的。”[1]
蘇教版義務教育小學名人娱乐教材堅持用基本名人娱乐思想統整全部內容,規劃合理的內容結構,側重引導學生經歷簡單的名人娱乐抽象過程、推理過程、建立模型過程。
(一)以数学抽象为主线引入数学研究的对象
名人娱乐是研究數量關係和空間形式的科學,名人娱乐研究的對象是一種抽象的存在。教材在編寫時,注重精心選擇素材,創設情境,把客觀世界中與數量和圖形有關的事物或現象抽象成名人娱乐研究的對象。
1.数量与数量关系的抽象。
把數量抽象成數。數概念的形成與發展是“數與代數”學習的起點,整數、小數、分數的學習,是一個從具體事物和數量抽象爲數的過程,是抽象水平不斷提高的過程,學生認識數的過程也是逐步感悟抽象思想的過程。比如教學正整數的認識,教材按照“現實情境中的數量—實物(小棒、小方塊等)表示數—計數器(或算盤)表示數—寫數”的線索,引導學生經歷數的抽象過程。再比如教學負整數的認識,教材選擇溫度計、海拔高度、收支盈虧、向不同方向走路等現實素材,從大量存在的具有相反意義的量中抽象出負數的意義。把數量抽象成數,並用符號表達,名人娱乐就有了研究的對象。
把數量多少關係抽象成數大小關係。抽象出研究對象不是根本,名人娱乐的本質是研究關係。數中最重要的關係是大小關係,大小關係是從數量裏的多少關係抽象出來的。教材結合認識10以內的數,通過創設童話情境,先引導學生比較同類事物數量的多少,再抽象出數的大小,進而演變爲一般的序關係(一個自然數加1就可以得到下一個比它大1的數)。有了數的大小關係,就能派生出自然數的加法,進而建構四則運算;有了數概念“序”的特性,就爲後面建構大數概念的更高程度的抽象提供經驗支撐。
把數抽象成字母。從算術的學習走向代數的學習,是學生學習名人娱乐的重要轉折點。如果說數字符號是對生活中各種物體個數的抽象概括,那麼字母則是對各種數字符號的抽象概括。教學用字母表示數,教材以“用式子表示擺三角形用小棒的根數”爲載體,引導學生經歷“具體事物--個性化地表示--學會名人娱乐地表示”的抽象過程,體驗字母表示數的概括性和抽象性。
2.图形与图形关系的抽象。
幾何學主要是研究幾何體和幾何圖形的空間形式、位置關係和量的關係。把現實生活中與圖形有關的事物抽象成平面圖形,爲幾何學打開研究的大門。教材從學生熟悉的現實空間中的物體出發,引導學生在觀察、操作、比較等活動中逐步捨棄其他屬性,對其形狀、大小、位置等幾何形態進行抽象和概括,進而獲得相應的表象,建立幾何圖形概念。比如教學認識長方體,教材引領學生經歷了兩個層次的抽象過程:觀察並交流生活中常見的長方體實物的過程,是學生捨棄它們的材質、顏色、用途等屬性,對長方體的形狀特徵進行抽象的過程;從不同角度觀察長方體模型的活動,是促進學生積極調度頭腦中已形成的長方體表象,並試圖以可視化的方式表示出來,實現用二維的幾何圖形表示三維的幾何體,完成把物體抽象成幾何圖形的過程。“方向與位置”爲研究圖形關係打開大門。教學“認識方向”,教材通過創設現實情境,讓學生在熟悉的環境中體驗東、南、西、北、東南、東北、西南、西北,進而抽象成平面圖,爲進一步研究圖形位置關係提供方法基礎;教學“確定位置”,教材提供教室座位圖,先讓學生利用已有的經驗描述小軍的位置,再把日常生活中用行和列描述物體位置的經驗抽象成有序的數對,過度到用數對錶示平面上點的位置,爲研究平面直角座標系做好準備。
分類思想是由抽象思想派生出來的。分類爲名人娱乐抽象活動提供必要的基礎,教材對分類思想作了精心架構。在“數的運算”中,通過練習引導學生對式題進行分類,整體把握筆算方法;在“解決問題策略”中,引導學生經歷分類列舉的過程,感悟策略的價值;在“圖形的認識”中,引導學生通過對圖形進行分類,引入圖形概念;在“數據的收集和整理”中,引導學生按不同的標準對數據進行分類,體會分類標準與分類結果之間的聯繫。等等。
(二)以数学推理为主线建构数学内容体系
推理是從一個或幾個已知判斷得出新判斷。人們通過推理得到名人娱乐命題和算法,建構名人娱乐理論體系大廈。推理有兩種形式,通過特例的分析引出普遍的結論叫歸納推理(包括類比推理),從普遍性結論或一般性的前提推出個別或特殊的結論叫演繹推理。在解決問題的過程中,歸納推理用於推斷結論,演繹推理用於證明結論。名人娱乐的發展,既需要演繹推理,也需要歸納推理。
教材在編寫時,注重處理好歸納推理與演繹推理的關係,堅持以推理思想爲統領,形成名人娱乐概念,建立名人娱乐知識體系。
1.从特殊到一般。
內容結構的建立。教材編寫注重整體性,突出名人娱乐思想在內容結構中的作用,促使學生由此及彼、舉一反三地進行探索性學習。如“圖形面積計算”的教學內容,教材以化歸思想統領整個內容領域,通過類似的編排線索,促進學生遷移感悟。
名人娱乐知識的形成。受小學生知識經驗和認知水平的限制,小學名人娱乐中大部分知識的形成和建立,教材都採用歸納(主要是不完全歸納)方式展開。有的是建立在類比例舉之上的歸納,有的是建立在抽象分析之上的歸納。
名人娱乐規律的探索。教材除了注重讓學生在知識的形成、發展中經歷由具體到一般的抽象、概括過程外,還通過選擇一些探索性的問題,讓學生在解決問題過程中拓展學習內容,體會歸納思想。一是通過習題引導學生體會不同領域名人娱乐內容之間的聯繫與綜合,積累對基本名人娱乐思想的認識。例如,六年級(下冊)“總複習”單元第11題,學生在解決問題的過程中不難歸納出“在正方形裏畫1×1個、2×2個、3×3個……相同的儘量大的圓,圓面積的和都是正方形面積的78.5%。”儘管這一結論還需要進一步的證明,但這種由特殊現象歸納一般規律的過程卻在學生頭腦中留下了深刻的印記。二是安排“探索規律”專題活動,引導學生經歷探索和發現規律的過程,體會由具體到抽象、由特殊到一般的名人娱乐思想。
2.从一般到特殊。
名人娱乐結論的推導。在小學階段,儘管很少涉及名人娱乐證明這樣嚴格規範的演繹推理,但一些名人娱乐結論的推導過程同樣蘊含了演繹思想。教材依據兒童的認知水平,從高年級開始安排藉助演繹推理建構名人娱乐的活動。比如在“多邊形的面積”單元中,教材先安排學生動手操作,建立圖形之間的聯繫,然後組織學生討論和分析,展開公式的推導過程。推導的過程,就是演繹方法的應用過程和演繹思想的感受過程。這種感受有助於建立對名人娱乐結論確定性的信念,有利於培養學生合乎邏輯的表達能力。
名人娱乐知識的應用。名人娱乐教材編排整體上是遵循“歸納—演繹”線索的,即先按照由具體到抽象、由特殊到一般學習新知識;再由一般到特殊,要求學生根據已經獲得的定義、定律、公式等,去解決一個個具體的問題。例如,探索出“三角形的內角和是180°”後,讓學生據此計算三角形未知角的度數,求出等腰直角三角形一個銳角的度數,推出頂角是60°的等腰三角形是正三角形。再如,通過歸納得到乘法分配律後,要求學生根據乘法分配律進行簡便計算等。通過這樣一些由一般向特殊的演繹,使抽象的名人娱乐概念、規律和原理具體化,有利於促進名人娱乐知識的理解和掌握,發展推理能力。
(三)以名人娱乐建模爲主線搭起名人娱乐與外部世界的橋樑
名人娱乐得到的一些結論要應用於現實世界,主要是通過名人娱乐模型。名人娱乐模型是溝通名人娱乐與現實世界的橋樑。從廣義上講,一切名人娱乐概念、公式、數量關係、圖形、表格,以及由它們所構成的算法系統,都可以稱爲名人娱乐模型。狹義上,名人娱乐模型專指針對一個個比較複雜的具體情境所建立的,旨在解決具體問題的、特定的模型。[2]在小學名人娱乐教材中,名人娱乐模型思想主要體現在:
實際問題中數量關係的抽象表達。教材分三個階段編排數量關係的學習:一年級結合四則運算意義感知實際問題裏各個數量之間的關係,體會加減乘除都是解決一類實際問題的名人娱乐模型;二年級結合教學內容在練習中有針對性地編排一些表格式練習,引導學生提煉實際問題的具體數量關係式,爲今後形成概括的數量關係式積累豐富的素材;四年級編排“常見的數量關係”單元,從大量的同類實際問題中概括出基本名人娱乐模型。學生獲得這種概括程度較高的數量關係後,就能推廣、識別任何同類數量關係。
列方程(或比例式)解決實際問題。方程是刻畫現實世界數量關係的名人娱乐模型。教學列方程解決簡單的實際問題,教材重在引導學生把實際問題抽象成名人娱乐語言(數量關係式),進而轉換成符號語言(方程式),領會名人娱乐模型思想和基本過程。
函數思想是由模型思想派生出來。函數是刻畫現實世界數量變化規律的名人娱乐模型,小學名人娱乐教學內容中蘊含豐富的函數思想,教材作了整體規劃和孕伏。例如,結合“數的運算”教學,教材通過題組練習或試商、調商活動,引導學生感受變量思想;結合“解決問題的策略”教學,教材引導學生在嘗試、假設、驗證、調整過程中體會函數關係;結合“正比例和反比例”教學,教材引導學生從變化的數量中研究不變的關係。等等。
二、基本数学思想的教学思考
以基本名人娱乐思想統率知識的發生、發展過程,努力使學生在獲得具體名人娱乐知識的同時受到相應名人娱乐思想的薰陶,是教材編寫的致力追求。但教材本身畢竟是一個靜態的結構系統,況且名人娱乐思想又內隱在該系統的表層之下。教學中,教師除了應挖掘教學內容的教育價值、把握基本思想的內涵實質外,還應注意以下幾方面:
(一)名人娱乐思想教學的基本方式和目標要求是“感悟”
名人娱乐本身具有高度的抽象性,名人娱乐思想又是名人娱乐知識和方法在更高層次上的抽象與概括。因此,就教學方式和目標要求而言,隱性的名人娱乐思想自然也區別於顯性的名人娱乐知識,主要表現爲“學生在積極參與教學活動的過程中,通過獨立思考、合作交流,逐步感悟名人娱乐思想。”[3]這就是說,學生獲得名人娱乐思想的基本方式與目標要求是“感悟”。
當然,名人娱乐課堂深入挖掘教學內容所蘊含的名人娱乐思想並融入名人娱乐知識的學習過程予以滲透是課程實施的要求,但如果試圖將教師所獲得的深刻理解也要求學生達到同樣認識水平,就不切實際了。因此,名人娱乐思想教學還應根據學生年齡的特點把握教學的度。
(二)名人娱乐思想教學“顯化”在名人娱乐思考的過程之中
名人娱乐思想教學應通過名人娱乐概念的形成和建立過程、名人娱乐規律的歸納和總結過程、名人娱乐問題的分析和解決過程來體現。比如,“問題情境—建立模型—求解驗證”的過程是感悟模型思想的關鍵,“猜想—驗證”的探索過程對感悟推理思想尤爲重要。學生只有親身經歷運用名人娱乐思維方法的思考過程,才能獲得對相應名人娱乐思想的深刻體驗。
例如,“間隔排列”的名人娱乐本質是一一對應。很多教師在教學中根據問題所包含的各種情況採用分類教學,總結出不同的結論,學生常常在“加1”“減1”“不變”之間不知所措。教學中,如果緊緊抓住“間隔排列”的名人娱乐本質,以名人娱乐思維方法帶動名人娱乐學習,那麼不同情況就會由對立走向統一,學生不僅學得輕鬆,而且“對應思想”透過名人娱乐思考活動得以“顯化”。
(三)数学思想教学要兼收并蓄,突出主干
不同的名人娱乐思想,互相間並不排斥,而是彼此包容共生的。比如,歸納和演繹,因爲思維路徑互逆,所以歸納和演繹通常是密切聯繫、相互補充的,也常常有機融合在一起,即歸納中有演繹,演繹中有歸納。教學中,通常以一種思想的滲透爲主線,同時融合其他的名人娱乐思想。
教學“小數乘整數”,教師先教學0.1、0.01、0.001與整數相乘。
課件分別出示直觀圖形(10等分的正方形、100等分的正方形和1000等分的正方體),每個圖形都表示整數“1”,其中的1份塗色。引導學生先用小數表示塗色部分,再思考這樣的幾份是多少,得出乘法算式:
0.1×4=0.4        0.1×8=0.8
0.01×5=0.05     0.01×35=0.35
0.001×9=0.009   0.001×125=0.125
引導學生觀察並歸納:因數中有幾位小數,積就有幾位小數。 
在此基礎上,探索一般的小數與整數相乘的算法。學生聯繫已有知識計算0.8×3和2.35×3,把0.8×3寫成8×3×0.1,把2.35×3寫成235×3×0.01。計算後發現,因數中有幾位小數,積就有幾位小數。
顯然,上面教學採用的是歸納方式。這種歸納又是建立在演繹分析之上,教學0.1、0.01、0.001與整數相乘時,通過呈現經驗過的實例,讓學生從名人娱乐知識的內在聯繫出發進行推理;教學一般的小數與整數相乘時,讓學生利用已有知識進行分析推理。歸納,讓學生更智慧;演繹,讓學生明白“名人娱乐是講道理的”。
(四)名人娱乐思想教學要體現階段性,逐步提升學生的領悟水平
名人娱乐思想教學的階段性要求,源自兩方面原因:一是小學生受自身知識積累、認知能力和思維抽象水平的侷限,他們對名人娱乐思想的感悟往往也需要經歷從模糊到清晰、從無意識到漸漸領悟這樣一個較爲漫長的過程;二是同一種名人娱乐思想可以蘊含在不同年級、不同名人娱乐概念和原理之中,並在這個過程中不斷豐富和拓展自身的內涵。因此,對某一名人娱乐思想的感悟,應充分考慮小學生的年齡特徵和心理活動水平,在不同階段、不同內容的教學活動中,提出不同程度的教學要求,從而使學生不斷提高感悟的水平。
例如,化歸思想是由名人娱乐推理思想派生出來的,在探索名人娱乐新知、解決名人娱乐問題的過程中具有不可替代的作用。在小學階段,化歸思想主要隱含在“數的運算”“圖形的測量”之中,不同階段的教學價值也是不同的。例如,在“圖形的測量”中,長方形面積計算、長方體體積計算部分,化歸的教學價值是:迴歸面積或體積本源,藉助面積或體積單位的特點,找到長度屬性與面積屬性或面積屬性與體積屬性之間的聯結點和對應關係。而在平行四邊形、三角形、梯形面積計算中,化歸的教學價值是:學會把握化歸思想中的“變”與“不變”的關係,體會“形狀變化”是策略,“大小不變”是基礎。而在圓的面積計算、圓柱體積計算部分,化歸的教學價值是:拓寬化歸思路的固有思維模式(化曲爲直),提升化歸思想。顯然,感悟和形成化歸思想需要一個長期的、層次化的過程,在這個過程中逐步豐富認識、積累經驗,提升感悟水平。

 

 

 


 
    
友情鏈接  

地址:四川省德陽市旌陽區黃河東路261號 Email:[email protected] 傳真:0838-2551353 電話:0838-2551128,2551997,15181058620
版權所有 德陽外國語學校 Copyright© 2012 蜀ICP備14026892號-2